D.1.1 Interim first year report on project management

Executive Summary

The present deliverable D1.1 Interim first-year report on project management, hereafter named interim report (IR), contains the necessary information for the Hycool to evaluate the state of implementation of the project, mainly the work plan, the timely review of the scheduled milestones and deliverables will allow an efficient project implementation as well as concrete options for adjustments of management procedures, compliance with the provisions of the EC, finances, and monitors each partner’s costs, the financial situation of the project and all administrative matters. The technical part contains a concise statement of the tasks undertaken and a forecast for the next reporting period. Any problems encountered during the period and possible deviations from project plans. This deliverable set by the Consortium, is the first IR planed in the WP1 at M12, jointly with the other two IR planned at M18 and M36, at the end of the project. These deliverables are differentiated from the periodic reporting (PR) set by INEA and planned at M18 and M36. Basically, the PR includes the detailed description of the technical work carried out by beneficiaries, the work performed by the work package, the impact, and finally the deviations and the full financial information. This report covers the first period from M1 (May 2018) to M12 (April 2019).

Experimental Evaluation of a Hybrid Adsorption-compression Cascade Chiller for Solar Cooling Applications in Industrial Processes

Title: Experimental Evaluation of a Hybrid Adsorption-compression Cascade Chiller for Solar Cooling Applications in Industrial Processes

Language: English

Authors: Valeria Palomba, Giuseppe E. Dino, Steffen Kühnert, Davide La Rosa, Andrea Frazzica.

Abstract:

The present work reports the experimental evaluation of the performance of a cascade chiller, having an adsorption cycle as a topping cycle and a vapour compression cycle as a bottoming cycle. An experimental testing campaign was carried out at CNR ITAE, focused on the definition of performance maps of the system under different operating conditions. In particular, heat source temperatures between 70°C and 85°C were evaluated, cooling temperatures between 22°C and 40°C and chilled water temperatures of -12°C up to 5°C, in order to reproduce the operation in different seasons, climates and user requests (i.e. air conditioning and refrigeration). Cooling powers from 18 kW (under air conditioning conditions) from 12 kW (for refrigeration conditions) were obtained for the lower cooling temperatures. Indeed, the cooling temperature has a great influence on the cooling capacity of the system, whereas heat source temperature has a smaller effect on the capacity of the system. Finally, the energy savings that can arise from such a configuration were calculated and up to 25% reduction, if compared to a standard vapour compression system can be achieved. A reduction in CO2 emissions up to 3.5 yearly tons were calculated as well.

Contact us!