Industrial cooling based on solar heat at the demo sites

Article by Alex Grande, from IDP

Powering of industrial processes, if based on renewable technologies, may offer greater potential for CO2 emission reductions. Solar thermal energy is a promising sector which has been widely studied during the last two decades, becoming a candidate of the highest potential among renewable energy technologies, especially for industrial heating and cooling processes, because some technologies, such as heat pumps and mechanical vapour recompression, are particularly effective in hybrid systems.

The use of direct solar heat in industry is often hampered by barriers like lack of nearby available surface and seasonal imbalances. However, recent solar steam developments applied in the cooling demand services is growing worldwide with a wider variety of use, mainly within the industry. Some technologies, such as heat pumps are particularly effective. The two demonstration sites selected to tests Hycool system (Bo De Debó and Givaudan) are industries where custom-designed packages will be built, installed and tested.

Bo De Debó is a specialised industry in preparing precooked fresh dishes based on meat, fish and vegetable products, for being frozen, vacuum-packed or canned, and then sealed. In this site, Hycool will pre-cool the water in a buffer tank where it should be cooled down with other chiller in order to get 3-5ºC needed for the production of “gazpacho” (a kind of vegetables juice) and food washing processes. The residual heat from the system will be used to produce hot water for cleaning operations.

CSP-Panels to be installed in the roof of Plant 3, in Bo de Debo facilities in Sant Vicenç de Castellet

Givaudan is the global leader in the creation of flavours and fragrances. In close collaboration with food, beverage, consumer product and fragrance partners, Givaudan develops tastes and scents that delight consumers the world over. The Hycool system will provide the cold water needed to refrigerate the glycol stored in a buffer tank before it’s pumped to the vacuum pump water rings. The residual heat from the system will be used to produce steam to be injected in the factory net.

The old chilling system that will be substituted for the Hybrid Heat Pump from the new Hycool system, in Givaudan facilities (Sant Celoni – Spain).

In summary, the solar thermal energy provided by the Hycool System will allow our pilot sites:

  • To reduce their productions costs by using a free source of energy
  • To increase their system efficiency by using the residual thermal energy for producing heat water or steam
  • To reduce their global CO2 emissions by reducing the use of fossil fuels for producing that heat

HyCool’s 2nd General Assembly in Austria

The HyCool Consortium visited Feldkirchen a.d. Donau, near Linz, Austria On May 28th and 29th for its 2nd General Assembly. The meeting was hosted by Ecotherm and held in the picturesque Schloss Muehldorf hotel.

The two-day meeting allowed all partners to evaluate the progress and work done with each work package and see where the project stands after it’s first year. Highlights included the status of design and test of the HHP prototypes for the demo sites, the protocols for testing the adsorber materials, the final design and time table for deployment and execution of the technologies in the demo sites, and a review of the exploitation and communication activities to date.

The proximity to Ecotherm’s premises also allowed the consortium the opportunity to do a technical visit. The consortium had the opportunity to see first hand how they produce the water tanks and take a look at the solar panels installed in their rooftops, which include the Fresnex soalr collectors that will be deployed at HyCool’s demo sites.

The meeting ended having established clear goals for the next 6 months and looking forward to the work ahead.