Measuring the Environmental and Socio-Economic Impacts of the HyCool System

Within the HyCool project (Industrial Cooling through Hybrid system based on solar heat), a fundamental point is to determine the environmental and socio-economic benefits of the innovative HyCool solution compared to the state of the art.

The HyCool project will introduce for the first time the solar energy in industrial cooling systems, as the result of the integration of 3 main innovations (Figure 1):

  • Solar steam generation (concentrating solar collectors);
  • Phase change materials (PCM) storages; and
  • Highly efficient and flexible hybrid chiller technology.
Figure 1. HyCool cooling system

With the installation of the demonstration sites in Givaudan (chemical industry) and Bo de Debó (food industry), we are now getting to the heart of the demonstration activities, which will include the assessment of environmental and socio-economic impacts.

The HyCool System indeed will result in relevant benefits on the environment and the human health, as well as in important economic benefits thanks to energy consumption reduction (estimated in 75%) and operational GHG emissions reduction.

In particular, the assessment of environmental and socio-economic impacts aims to analyse, evaluate, understand and manage the environmental and health effects of the HyCool technologies and solutions, with particular reference to the Global Warming Potential (GWP), with the quantification of Greenhouse Gases (GHG) emissions considering the entire life up to the point of disposal.

The activities will be performed in the framework of Work Package 7, led by the partner CiaoTech srl (Italy), a consulting company specialised in innovation management.

Since the assessments are conducted with a comparative methodology, as a first step, we have identified and analysed the reference process, with most industrial cooling and refrigeration systems worldwide powered by electricity and employing big electrically driven vapor compression machines. Secondly, we have defined the main environmental parameters and indicators to be monitored during the assessments.

In the coming months, we will carefully and thoroughly analyse the HyCool technologies and system, first of all from the environmental point of view, taking into account all the phases of the life cycle as per ISO 14040 and ISO 14044 standards (Figure 2). This analysis is known as Life Cycle Assessment or LCA.

Figure 2. Generic illustration of LCA study approach

Thus, the LCA will allow us to quantify all inputs (resources and energy) and outputs (pollutants and wastes) of the solar cooling systems and assessing how these solar cooling systems affect the environment, by demonstrating the benefits of the HyCool System in comparison with the heating and cooling processes currently used in the industry.

We will then analyse the economic impacts of the developed innovative technologies by comparing them against the conventional practice with a view to demonstrate significant reduction in human labour intensity and cost, but also reduction in operating expenditures incurred by energy, water and material consumption.

Finally, the assessment will focus on the social impacts that the Hycool solutions will generate on society at large.

These activities will allow us to have a complete picture of the potential impacts deriving from the application of HyCool innovation in the world of industrial refrigeration and to demonstrate that solar heat can become a reliable energy source for greener, more energy-efficient industrial processes.

Written by Luigi Ranza, from CiaoTech

Hybrid heat pump for industrial applications: experimental characterization and optimal configuration

How to turn solar heat and industrial waste heat into useful cooling effect? Industrial processes are often energy-intensive and the need for their efficient decarbonization is now at the forefront of governmental and corporate policies worldwide. However, solutions for the green transition of the industrial sector should be:

  • Flexible
  • Widely applicable
  • Reliable

And should:

  • Minimize energy consumption
  • Reduce operational costs
  • Lower CO2 footprint

Is there a solution to all these answers? Heat pumps are the fit match to tackle these issues.

Within HYCOOL, CNR ITAE and Fahrenheit have developed a hybrid thermal heat pump for application in several industrial sectors where efficient and sustainable cooling is needed. But what is the hybrid heat pump?

The hybrid heat pump concept

HYCOOL system proposes the combination of a thermal heat pump with an electrical heat pump: the thermal heat pump exploits low-temperature waste heat (i.e. 70-90 °C) that is generally unused or dumped to the ambient. It can also be powered by renewable sources, such as solar heat and biomass. The electrical heat pump can exploit electricity locally produced (i.e. from PV panels or other sources) and thus further increase the share of renewables. The hybridization consists in the configuration of the two heat pumps: they can work in series, in parallel or in cascade by just changing the hydraulic connections. This makes HYCOOL configuration flexible and easily adaptable to different industrial cases.

In the framework of HYCOOL, two case studies are considered, which are shown in Figure 1:

  • At GIVAUDAN (chemical industry), process cooling at +5°C is needed. To achieve this target with an overall high efficiency, the base load is covered with an adsorption unit (80 kW nominal power) that cools down the fluid in the range 5-21°C. Peak load is supplied by a compression unit with a natural refrigerant (propane, R290), that is connected in series with adsorption unit.
  • At Bodedebò (food industry), cooling of food at -10°C is needed. In this case, the efficiency in cooling generation is achieved by using a cascade configuration: the thermal heat pump (adsorption) is used as topping stage for the electrical heat pump, in a two-stage system. This increases the efficiency of the electrical heat pump up to 40% at the expenses of renewable or even waste low-grade heat, so virtually without the need for extra cost.
Figure 1: HYCOOL flexible configuration of the hybrid heat pump.

Experimental evaluation of the hybrid heat pump

The hybrid heat pump was tested in the laboratories of CNR ITAE in Messina in design and off-design conditions (see Figure 2). The aim of the tests was to define the cooling power and electricity consumption of the hybrid heat pump in the different ambient and process operating conditions, as well as confirm the reliability under off-design conditions. To this purpose, more than 100 testing cases were evaluated, and the results were reported in form of performance maps, like those in Figure 3.

Figure 2: the hybrid heat pump installed at CNR.
Figure 3: performance maps of the hybrid heat pump tested at CNR.

Is HYCOOL solution feasible for you?

HYCOOL solution is widely suitable for a vast range of processes. To know whether solar cooling can be part of your industrial processes, a screening tool, based on process requirements and information on the solar radiation in your industry’s location, was realized and is accessible here:

The results of the experimental testing at CNR, instead, were used to compile a calculator to predict the refrigeration capacity and energy efficiency ratio (EER) of the cascade HYCOOL chiller for a given industrial cooling process. You can access the tool here:

References

Written by CNR-ITAE

How Much More Efficient Can Your Process Get?

HyCool’s technology helps industrial processes to achieve higher refrigeration efficiency by integrating solar heat with hybrid heat pump technology. The performance of a hybrid adsorption-compression cooling system mainly depends on the operation parameters of the process. We have developed a “Refrigeration Capacity and EER Calculator Tool” that helps you estimate the performance of hybrid heat pump technology based on hot water temperature, chilled water temperature, and dry cooler outlet temperature.

You can try it out! Click here!

HyCool Participated at SP2020

On Thursday 29th October, at the virtual Sustainable Places 2020 (SP2020) conference, Prof. Dr. Uli Jakob, from project partner Dr. Jakob Energy Research; presented HyCool at the “Renewable Heating and Cooling Solutions for Buildings and Industry Workshop”.

During this online encounter, a selection of fifteen H2020 EU-funded projects gathered experts from the biomass, geothermal, solar thermal and heat pump sectors to explore a shared strategy to expand the use of renewable energy technology for building and industrial heating and cooling processes.

These technologies offer efficient and increasingly cost-competitive solutions to energy consumption.

Figure 1. Banner for “Renewable Heating and Cooling Solutions for Buildings and Industry Workshop” at SP2020.

In the course of the workshop, the projects were grouped into four categories according to their focus: (1) RHC for industrial applications; (2) storage solutions for RHC building support; (3) innovative solutions for RHC building deployment; (4) demonstration actions for RHC in buildings.

HyCool’s Presentation

Within the first cluster reviewing Renewable Heating and Cooling (RHC) for industries, Dr. Jakob offered a view of HyCool’s mission to increase the use of solar heat in industrial processes. For instance, HyCool’s solution combines solar collectors with adsorption chillers, that use solar energy to produce steam, heating, and cooling energy with greater efficiency.

Figure 2. Slide from Dr. Jakob’s presentation at SP2020.

Furthermore, Dr. Jakob’s shared the key equipment composing HyCool’s innovation and how it will be tested on the two pilot sites where HyCool will use the latest available developments in both concentrated solar panels and thermal storage fields to develop two innovative hybrid solar system concepts: one for chemical industrial processes primarily meant for solar steam and cooling energy provision and one for the small food industry primarily meant for solar cooling production.

Figure 3. Slide from Dr. Jakob’s presentation at SP2020.

In addition, Dr. Jakob showed how the HyCool’s Pre-feasibility Simulator can enable users to evaluate whether or not HyCool’s technology is suitable for a given industrial cooling process.

More About the Workshop

In conclusion, to further support the increase in the share of renewable energy across the EU, the production and validation of RHC solutions are of primary importance. The numerous fields of application in which innovative RHC technologies are proposed and currently investigated to demonstrate the relevance of this subject. Their performance and reliability must be demonstrated in order to achieve large distribution, because one of the key obstacles is the reluctance of industrial firms to implement new technologies, which can cause problems in production processes.

What seems necessary is to continue and improve cooperation between EU partners in order to take advantage of the expertise gained and to explore the social obstacles to the implementation of these solutions.

Learn about this workshop’s participating projectSWS-Heating – HYBUILD – CREATE – TRI-HP – GEOFIT – SHIP2FAIR – SUNHORIZON – Heat4Cool – GEOFIT – SCORES – Innova microSolar – Hybrid BioVGE – RES4BUILD – SolBioRev – FRIENDSHIP

Chair of the workshop: Andrea Frazzica (CNR ITAE) – partner of GEOFIT

Participating European Commission representatives: Olga RIO-SUAREZ, Policy Officer, DG Research & Innovation; and Eleftherios Bourdakis, Policy Officer, DG Research & Innovation.

Sources

Link to Proceedings: Renewable Heating and Cooling Solutions for Buildings and Industry

HYCOOL Held Its (Virtual) General Assembly on 17th November 2020

After two years and a half since the start of the project, HYCOOL partners met for its 5th General Assembly. The leaders of each on-going Work Package had a presentation about the progress of their work and planned for the next period, considering risks, opportunities and challenges.

The HYCOOL team is excited on announcing that pilot implementation has already started. The construction of the technical rooms at the Givaudan demo site are nearly completed, which will allow to start the installation of the technology provided by FAHRENHEITAIT and ECOTHERM in the upcoming weeks. At the Bo de Debò demo site, the civil works for the technical room have already started and will be completed shortly.

We will keep an eye on the pilot progress for the next months!

Start of the Works to Launch the Pilots

At the end of last September, the pilots of the HyCool project (Industrial Cooling through Hybrid system based on solar heat) began their way to start-up. In this initial phase of project execution, the two demonstration sites have started the civil works with which the necessary infrastructures are built to house the equipment and all parts of the system. These works are developed on the following fronts: 

  1. Givaudan: installation of the solar field on a plot adjacent to the plant; construction of a prefabricated technical room next to the solar field that will provide water vapor to the production plant from solar energy and with the technology supplied by Ecotherm; construction of the technical room that will supply cold to the plant, using adsorption pumps built by Fahrenheit.
     
Solar Field place at Givaudan pilot site
Slab for the Solar field Equipment Room (Ecotherm)
Construction of the Fahrenheit Equipment Room

2. Bo de Debó: installation of the solar field on one of the warehouses of the production plant; construction of the technical room that will house the hot and cold water production system using using Fahrenheit hybrid heat heat pumps and Ecotherm solar technology

Bo de Debó Technical Room works

The construction works are expected to be completed by the end of November 2020, giving way to the installation and commissioning stages of the HyCool systems, whose commissioning is expected in mid-June 2021. 

HYCOOL Scientific Poster and Paper for EuroSun 2020

On September 1st , 2020, HYCOOL partner, CNR ITAE, presented the project at EuroSun 2020.

EuroSun 2020 offers a platform to discuss the latest developments with leading solar energy experts as well as policymakers and industry representatives. CNR ITAE presentation included:

  • A poster on ‘Experimental evaluation of a hybrid adsorption-compression cascade chiller for solar cooling applications in industrial processes’.
  • And the publication of the scientific paper ‘Experimental evaluation of a hybrid adsorption-compression cascade chiller for solar cooling applications in industrial processes’, which will be included at the ISES Conference Proceedings Database.

Download the paper here and the poster here.

Further information about the event is available here.

We Have Been Showcased @CORDIS_EU

Our project aiming to increase the use of solar heat in industrial processes has been featured at cordis.europa.eu, the European Commission’s primary source of results, news, and information on EU-funded research projects. The article shows how we are boosting the concept on the cheap and easy-to-install linear Fresnel system, which basically consists of many mirrors in parallel rows, that imitate a large Fresnel Lens, to augment solar energy acquisition. This concentrated solar power system (CSP) is coupled with tailor-made hybrid heat pumps (HHPs) that enable “both industrial heating and cooling powered by the sun” as our project coordinator, Silvia Jané, has explained.
 
Quoting the article:
 
“At the Spanish production site of consortium partner Givaudan, a flavors and fragrances company, the HyCool concept has been applied to several processes with either heating or cooling needs. Givaudan’s current cold installation makes use of a glycolic water chiller to keep the water entering the liquid ring of the vacuum pumps at 7 °C, with a thermal demand of 125.5kW. ”For the use cases considered, the electrical consumption of the compression chiller will be reduced by 29 % (spring) and 44 % (summer), respectively, by using HyCool technology,” says Jané This efficiency gain is even higher if compared to common refrigeration systems”.
 
We are advancing this technology and systems to promote energy efficiency for industries.
 
 
 
 

Hycool’s 3rd General Assembly in Rimini

Rimini, a beautiful Italian city on the Adriatic coast served as the center of operations for the third meeting of the Hycool consortium, celebrated between November 5th and 6th. This location was chosen to also boost the project’s dissemination activities at the Ecomondo fair, especially under the KeyEnergy section; one of the two main exhibition events on renewable energy and energy efficiency in Italy. 

During the meeting, technical advances regarding the installations that will be made at the pilot sites were discussed. Those advances concerned the choice of the absorber material, the monitoring of the material’s degradation, as well as the integration of the system CSP including energy management tools. The consortium also discussed the system integration for the high-performance solar heat pump components. Decisions were also made regarding the demonstration activities to be made in the future.

R2M presented Hycool to Ecomondo’s attendants thanks to a workshop held at the Girasol Room on November 6th. This workshop included a conference and round table, where more or less 40 participants had the occasion to learn about Hycool’s technology and potential.

The project’s partners CNR ITAE, Givaudan, and R2M Solution presented very interesting information raising interest among the attending technical stakeholders responsive to offer energy efficiency and renewable energy solutions to their customers in the future.

The round table offered the participants the opportunity to learn more about the state of the art of energy efficiency in industry and concrete best practices of business models to finance energy audits and continue investing in efficient and renewable energy with a focus on the Italian market.

It must be said that organisers and attendees were quite happy by the workshop’s success in such a huge fair where the project competed for attention with big names like Shell and well known Italian institutions. 

Additionally, R2M also set up a booth inside the Key Energy section as a way to share more information to the fair’s public and to raise awareness on the benefits of Hycool’s industrial solar heating solutions.

Download the presentations from the workshop below:

Three Insights on the Development of the Hybrid Heat Pump

The hybrid heat pump constitutes one of the core elements of the HyCool solution for solar cooling in industry and, therefore, its optimal design is crucial to achieving high performance of the overall system. Since the very beginning of the project, the Fahrenheit team has been working on a prototype of the hybrid heat pump with the goal of obtaining highest efficiency while keeping the machine simple and reliable. In the early spring of 2019, the first prototype HyCool XHHP01 was ready for testing. The results of the tests performed by CNR have shown a very good performance of the prototype and have indicated a few areas, which still needed improvement. Currently, the Fahrenheit team is making use of the time left before the installation of the pilot sites to optimize the functionalities of the hybrid heat pump. Three members of the team explain to us the general concept of the hybrid heat pump, how they want to optimize the prototype, and what challenges are still ahead of them.

After the tests at CNR’s premises in Italy, the prototype HyCool XHHP01 came back to Germany, where the Fahrenheit engineers are working on further improvements in the design of the hybrid heat pump.

The hybrid heat pump constitutes one of the core elements of the HyCool solution for solar cooling in industry and, therefore, its optimal design is crucial to achieving high performance of the overall system.

Eliza Nowak, Project Engineer at Fahrenheit GmbH, on the general concept of the hybrid heat pump

The term “hybrid” refers to a combination of two or more interconnected and co-operating heat pumps based on different principles of operation. In our case, the developed prototype consists of an adsorption and a compression heat pump connected in such a way that the evaporator of the adsorption unit cools down the condenser of the compression one. This lowers the condensation temperature below the one resulting from the outdoor conditions. Lower condensation temperature means higher EER (Energy Efficiency Ratio – ratio of the delivered cooling capacity to the consumed electrical power) of the compression chiller. Of course, to make this layout feasible, the savings of the electrical power consumption of the compressor due to higher EER should be higher than the additional power consumption of the adsorption unit and its auxiliaries.

Doreen Acker works on the changes in the control software of the hybrid heat pump.

Doreen Acker, Software Developer at Fahrenheit GmbH, on the prototype optimization

In terms of the control software optimization, we are implementing two changes in the HyCool XHHP01 prototype. The first one is the introduction of a free cooling mode, to allow the use of low external temperatures for cooling of the compression unit’s condenser. In brief, in the free cooling mode the condensation heat of the compression chiller is dissipated directly to the ambient air via the dry cooler. If the outdoor temperatures are low enough to ensure the condensing temperature of the compression chiller as low as or lower than with the use of the adsorption chiller, which happens mostly in winter and during night time, the system will operate more efficiently in the free cooling mode. The operation of the system resembles the standard operation of the compression chiller and saves the electrical power needed to drive the circulating pumps of the adsorption chiller. Thanks to the clever hydraulic connections in the adsorption unit, we can implement this new operation mode through a software update without the need to rebuild anything in hydraulics. The second change is the optimized start-up procedure. After the tests performed by the colleagues from CNR, they suggested that the compression unit should be started when the temperature in the cold water circuit of the adsorption unit reaches a specified threshold. In this way, we will ensure favourable conditions for the operation of the compression unit at all times.

René Weinitschke, After Sales & Factory Service Engineer at Fahrenheit GmbH, on the data logging and Cloud solutions

René Weinitschke is responsible for the implementation of Cloud solutions for data logging.

In order to evaluate the performance of the hybrid heat pump, we have to perform measurements and collect meaningful data. Some of the measurements will be carried out by the main control system based on the sensors installed on the pipelines but there are also quite a few sensors installed inside the prototype. The values from these sensors will not be sent to the main control system; rather we plan to collect them in the Cloud. We have not used this technology so far, but its implementation in our commercial projects is one of our priorities. It will not only help our After Sales services, but also contribute to our technology development. HyCool is a great opportunity for us to test this solution! From the beginning, we have to place great emphasis on the data security, especially because the pilot plants will be installed in “real-life” factories.

According to the current execution plan, the optimized prototype of the hybrid heat pump is going to be delivered to the Bo de Debó demo site in October 2019. After proper installation and commissioning, the operation of the hybrid heat pump will be monitored for 12 consecutive months. Based on the collected data the Fahrenheit team will evaluate its performance. It is expected that due to the optimization measures implemented, the prototype will show even better performance than what was achieved during the first tests at CNR.

Contact us!