At the end of last September, the pilots of the HyCool project (Industrial Cooling through Hybrid system based on solar heat) began their way to start-up. In this initial phase of project execution, the two demonstration sites have started the civil works with which the necessary infrastructures are built to house the equipment and all parts of the system. These works are developed on the following fronts:
Givaudan: installation of the solar field on a plot adjacent to the plant; construction of a prefabricated technical room next to the solar field that will provide water vapor to the production plant from solar energy and with the technology supplied by Ecotherm; construction of the technical room that will supply cold to the plant, using adsorption pumps built by Fahrenheit.
2. Bo de Debó: installation of the solar field on one of the warehouses of the production plant; construction of the technical room that will house the hot and cold water production system using using Fahrenheit hybrid heat heat pumps and Ecotherm solar technology
The construction works are expected to be completed by the end of November 2020, giving way to the installation and commissioning stages of the HyCool systems, whose commissioning is expected in mid-June 2021.
By maximising the use of renewable energy through its unique technology, HyCool aims to minimise greenhouses gas emissions. Givaudan, which itself has a target of reducing absolute Scope 1 and 2 GHG emissions by 30% between 2015 and 2030, is proud to host one of the project’s two pilot sites at its Sant Celoni plant. Givaudan spoke to Jorge Vilaseca, local Project Engineer, to get an update.
Why did Givaudan decide to participate in this project?
The idea was to test HyCool in at least two industries using significant amounts of cooling in their processes and Givaudan offers a great profile to host one of the pilot sites as a representative of the chemical industry. We couldn’t pass up the opportunity to participate in this innovative project. HyCool is particularly attractive to Givaudan for two main reasons. First, our sustainability strategy A Sense of Tomorrow includes ambitious environmental targets. This project will help us reduce GHG emissions by a projected 3% for the site and decrease energy consumption in terms of electricity and gas, helping us towards our goal of 100% renewable electricity by 2025. The project is totally aligned with our sustainability strategy. Secondly, every Givaudan production plant needs heating and cooling, and it would be relatively easy to replicate this technology. HyCool should deliver refrigeration with 25% greater efficiency—this would provide Givaudan a competitive advantage.
How far along are we in the project?
We have finished the conceptual phase: we have decided where and how to use the cooling produced, where to install equipment and how to connect it. Now we are looking at detailed engineering: how to best connect materials, figuring out the best design for the electrical connections, etc. The one-year installation phase will then start this summer.
What requirements did Sant Celoni have to take into account when planning installation?
One issue was finding a place to install the solar collectors. They require more than 1, 000 m2 of surface, preferably over a roof. Because of a lack of surface on our buildings, and for safety reasons, mainly the presence of flammable products, this wasn’t possible, and we had to install the solar field at ground level. This caused problems such as how to manage shadows of other buildings that we had to solve.
We also have to comply with all EHS requirements including ensuring a good works plan for execution. We expect a number of external contractors and companies on site during installation and we will need to monitor all aspects of their work. We will need to ensure a pre-start safety review, issue corresponding work permits and make sure we prevent injuries and accidents: we want to ensure that “Everyone gets Home Safe Everyday”.
Givaudan, which itself has a target of reducing absolute Scope 1 and 2 GHG emissions by 30% between 2015 and 2030, is proud to host one of the project’s two pilot sites at its Sant Celoni plant.
How did consortium partners contribute?
During the initial phase, we worked closely with the equipment companies and engineering and general contracting partners. This has been a real team effort.
What are the next steps for Givaudan as a pilot site?
The next steps are to finish the installation on time, on budget and safely and then to operate the machinery and collect data on energy efficiency and ease of use. We have two years of hard work ahead, but it will be stimulating. As to transferring the technology to other sites – why not? If it is cost effective, we will be able to use it in countries with even more favourable weather conditions such as Mexico, South Africa or Singapore.
Powering of industrial processes, if based on renewable technologies, may offer greater potential for CO2 emission reductions. Solar thermal energy is a promising sector which has been widely studied during the last two decades, becoming a candidate of the highest potential among renewable energy technologies, especially for industrial heating and cooling processes, because some technologies, such as heat pumps and mechanical vapour recompression, are particularly effective in hybrid systems.
The use of direct solar heat in industry is often hampered by barriers like lack of nearby available surface and seasonal imbalances. However, recent solar steam developments applied in the cooling demand services is growing worldwide with a wider variety of use, mainly within the industry. Some technologies, such as heat pumps are particularly effective. The two demonstration sites selected to tests Hycool system (Bo De Debó and Givaudan) are industries where custom-designed packages will be built, installed and tested.
Bo De Debó is a specialised industry in preparing precooked fresh dishes based on meat, fish and vegetable products, for being frozen, vacuum-packed or canned, and then sealed. In this site, Hycool will pre-cool the water in a buffer tank where it should be cooled down with other chiller in order to get 3-5ºC needed for the production of “gazpacho” (a kind of vegetables juice) and food washing processes. The residual heat from the system will be used to produce hot water for cleaning operations.
Givaudan is the global leader in the creation of flavours and fragrances. In close collaboration with food, beverage, consumer product and fragrance partners, Givaudan develops tastes and scents that delight consumers the world over. The Hycool system will provide the cold water needed to refrigerate the glycol stored in a buffer tank before it’s pumped to the vacuum pump water rings. The residual heat from the system will be used to produce steam to be injected in the factory net.
In summary, the solar thermal energy provided by the Hycool System will allow our pilot sites:
To reduce their productions costs by using a free source of energy
To increase their system efficiency by using the residual thermal energy for producing heat water or steam
To reduce their global CO2 emissions by reducing the use of fossil fuels for producing that heat
Cookies
We serve cookies. If you think that's ok, just click "Accept all". You can also choose what kind of cookies you want by clicking "Settings".
Read our cookie policy