Hycool’s 3rd General Assembly in Rimini

Rimini, a beautiful Italian city on the Adriatic coast served as the center of operations for the third meeting of the Hycool consortium, celebrated between November 5th and 6th. This location was chosen to also boost the project’s dissemination activities at the Ecomondo fair, especially under the KeyEnergy section; one of the two main exhibition events on renewable energy and energy efficiency in Italy. 

 

 

During the meeting, technical advances regarding the installations that will be made at the pilot sites were discussed. Those advances concerned the choice of the absorber material, the monitoring of the material’s degradation, as well as the integration of the system CSP including energy management tools. The consortium also discussed the system integration for the high-performance solar heat pump components. Decisions were also made regarding the demonstration activities to be made in the future.

 

 

 

R2M presented Hycool to Ecomondo’s attendants thanks to a workshop held at the Girasol Room on November 6th. This workshop included a conference and round table, where more or less 40 participants had the occasion to learn about Hycool’s technology and potential.

The project’s partners CNR ITAE, Givaudan, and R2M Solution presented very interesting information raising interest among the attending technical stakeholders responsive to offer energy efficiency and renewable energy solutions to their customers in the future.

The round table offered the participants the opportunity to learn more about the state of the art of energy efficiency in industry and concrete best practices of business models to finance energy audits and continue investing in efficient and renewable energy with a focus on the Italian market.

It must be said that organisers and attendees were quite happy by the workshop’s success in such a huge fair where the project competed for attention with big names like Shell and well known Italian institutions. 

 

 

 

Additionally, R2M also set up a booth inside the Key Energy section as a way to share more information to the fair’s public and to raise awareness on the benefits of Hycool’s industrial solar heating solutions.

 

 

Meet the Pilot Sites: Givaudan

Article by Givaudan

By maximising the use of renewable energy through its unique technology, HyCool aims to minimise greenhouses gas emissions. Givaudan, which itself has a target of reducing absolute Scope 1 and 2 GHG emissions by 30% between 2015 and 2030, is proud to host one of the project’s two pilot sites at its Sant Celoni plant. Givaudan spoke to Jorge Vilaseca, local Project Engineer, to get an update.

HyCool Pilot: Givaudan’s Sant Celoni Site

Why did Givaudan decide to participate in this project?

The idea was to test HyCool in at least two industries using significant amounts of cooling in their
processes and Givaudan offers a great profile to host one of the pilot sites as a representative of
the chemical industry. We couldn’t pass up the opportunity to participate in this innovative project.
HyCool is particularly attractive to Givaudan for two main reasons. First, our sustainability strategy
A Sense of Tomorrow includes ambitious environmental targets. This project will help us reduce
GHG emissions by a projected 3% for the site and decrease energy consumption in terms of
electricity and gas, helping us towards our goal of 100% renewable electricity by 2025. The
project is totally aligned with our sustainability strategy. Secondly, every Givaudan production
plant needs heating and cooling, and it would be relatively easy to replicate this technology.
HyCool should deliver refrigeration with 25% greater efficiency—this would provide Givaudan a
competitive advantage.

How far along are we in the project?

We have finished the conceptual phase: we have decided where and how to use the cooling
produced, where to install equipment and how to connect it. Now we are looking at detailed
engineering: how to best connect materials, figuring out the best design for the electrical
connections, etc. The one-year installation phase will then start this summer.

What requirements did Sant Celoni have to take into account when planning installation?

One issue was finding a place to install the solar collectors. They require more than 1, 000 m2 of
surface, preferably over a roof. Because of a lack of surface on our buildings, and for safety
reasons, mainly the presence of flammable products, this wasn’t possible, and we had to install
the solar field at ground level. This caused problems such as how to manage shadows of other
buildings that we had to solve.

We also have to comply with all EHS requirements including ensuring a good works plan for
execution. We expect a number of external contractors and companies on site during installation
and we will need to monitor all aspects of their work. We will need to ensure a pre-start safety
review, issue corresponding work permits and make sure we prevent injuries and accidents: we
want to ensure that “Everyone gets Home Safe Everyday”.

Givaudan, which itself has a target of reducing absolute Scope 1 and 2 GHG emissions by 30% between 2015 and 2030, is proud to host one of the project’s two pilot sites at its Sant Celoni plant.

How did consortium partners contribute?

During the initial phase, we worked closely with the equipment companies and engineering and
general contracting partners. This has been a real team effort.

What are the next steps for Givaudan as a pilot site?

The next steps are to finish the installation on time, on budget and safely and then to operate the
machinery and collect data on energy efficiency and ease of use. We have two years of hard work
ahead, but it will be stimulating. As to transferring the technology to other sites – why not? If it is
cost effective, we will be able to use it in countries with even more favourable weather conditions
such as Mexico, South Africa or Singapore.

This interview is also available at Givaudan’s website.

Industrial cooling based on solar heat at the demo sites

Article by Alex Grande, from IDP

Powering of industrial processes, if based on renewable technologies, may offer greater potential for CO2 emission reductions. Solar thermal energy is a promising sector which has been widely studied during the last two decades, becoming a candidate of the highest potential among renewable energy technologies, especially for industrial heating and cooling processes, because some technologies, such as heat pumps and mechanical vapour recompression, are particularly effective in hybrid systems.

The use of direct solar heat in industry is often hampered by barriers like lack of nearby available surface and seasonal imbalances. However, recent solar steam developments applied in the cooling demand services is growing worldwide with a wider variety of use, mainly within the industry. Some technologies, such as heat pumps are particularly effective. The two demonstration sites selected to tests Hycool system (Bo De Debó and Givaudan) are industries where custom-designed packages will be built, installed and tested.

Bo De Debó is a specialised industry in preparing precooked fresh dishes based on meat, fish and vegetable products, for being frozen, vacuum-packed or canned, and then sealed. In this site, Hycool will pre-cool the water in a buffer tank where it should be cooled down with other chiller in order to get 3-5ºC needed for the production of “gazpacho” (a kind of vegetables juice) and food washing processes. The residual heat from the system will be used to produce hot water for cleaning operations.

CSP-Panels to be installed in the roof of Plant 3, in Bo de Debo facilities in Sant Vicenç de Castellet

Givaudan is the global leader in the creation of flavours and fragrances. In close collaboration with food, beverage, consumer product and fragrance partners, Givaudan develops tastes and scents that delight consumers the world over. The Hycool system will provide the cold water needed to refrigerate the glycol stored in a buffer tank before it’s pumped to the vacuum pump water rings. The residual heat from the system will be used to produce steam to be injected in the factory net.

The old chilling system that will be substituted for the Hybrid Heat Pump from the new Hycool system, in Givaudan facilities (Sant Celoni – Spain).

In summary, the solar thermal energy provided by the Hycool System will allow our pilot sites:

  • To reduce their productions costs by using a free source of energy
  • To increase their system efficiency by using the residual thermal energy for producing heat water or steam
  • To reduce their global CO2 emissions by reducing the use of fossil fuels for producing that heat