How Much More Efficient Can Your Process Get?

HyCool’s technology helps industrial processes to achieve higher refrigeration efficiency by integrating solar heat with hybrid heat pump technology. The performance of a hybrid adsorption-compression cooling system mainly depends on the operation parameters of the process. We have developed a “Refrigeration Capacity and EER Calculator Tool” that helps you estimate the performance of hybrid heat pump technology based on hot water temperature, chilled water temperature, and dry cooler outlet temperature.

You can try it out! Click here!

D.3.4 Design review of the hybrid heat pump

Executive Summary

This document is the deliverable “D3.4 – Design review of the hybrid heat pump” in the European project “HYCOOL – Industrial Cooling through Hybrid system based on Solar Heat” (hereinafter also referred to as “HYCOOL”, project reference: 792073). HyCool Project Mission is increasing the current use of Solar Heat in Industry Processes, and to do so the project proposes the coupling of a new Fresnel CSP Solar thermal collectors (FCSP) system with specially build Hybrid Heat Pumps (HHP) (a “two in one” combination of adsorption and compressor-based heat pumps) for a wider output temperature range (Solar Heating & Cooling –SHC-), and a wide range of design and operational configurations to increase the potential implementation of the proposed Solar Heat in industrial environments. The solutions encompassed in the project will be implemented and tested in operational processes in two different pilot cases in the food and chemical industry. The food case pilot is hosted by Bo de Deb. which represents a small food industry in a high solar irradiation area with cooling needs in the production processes. Here the industrial cold installation is necessary for the good preservation of the product. The chemical case pilot targets industries with several processes in high solar irradiation areas with steam and cooling needs. This pilot is hosted by Givaudan where the cold installation makes use of a brine chiller to keep the water entering the liquid ring of the vacuum pumps at 7.C.

The purpose of this deliverable is to describe the key findings of the review process, which focuses on the design of the Hybrid Heat Pump. This report contains the findings with regard to control strategy, the interconnection of the heat pumps, selection of the suitable adsorbent and refrigerant, as well as an optimal size of the HHP.

D.3.3 Experimental characterization of the hybrid heat pump module

Executive Summary

This document is the Deliverable “D3.3 – Experimental characterization of the hybrid heat pump module ” of the European project “HYCOOL – Industrial Cooling through Hybrid system based on Solar Heat.” (hereinafter also referred to as “HYCOOL”, project reference: 792073).

This deliverable reports about the experimental performance evaluation of the hybrid cascading chiller under lab-controlled working conditions. The chiller was manufactured by Fahrenheit by connecting in cascade a silica-gel water adsorption cooling machine with a vapour compression chiller using R1270 (propylene) as refrigerant.

ISES Solar World Congress 2019 Paper: “Analysis of a solar hybrid cooling system for industrial applications”

Title: Analysis of a solar hybrid cooling system for industrial applications

Language: English

Authors: Uli Jakob (*1) and Falko Kiedaisch (*1)

*1: Dr. Jakob energy research GmbH & Co. KG (JER), Pestalozzistr. 3, 71384 Weinstadt (Germany)

Abstract: This paper presents the analysis of a new Fresnel solar thermal collector (FCSP) system with a Hybrid Heat Pump (HHP) for solar cooling purposes in industry using TRNSYS simulation. The HHP is a combination of a thermally driven adsorption chiller and electric compression chiller in a cascaded configuration, to achieve highly increased Energy Efficiency Ratios (EER) for the operation of the solar assisted HHP system. The benefits of the solar assisted HHP system is mainly based on constantly low heat rejection temperature of the compression chiller, compared to conventional ambient heat rejection systems, as the adsorption chiller is responsible for the heat rejection of the entire hybrid cooling system. The evaluation of a demo case in Barcelona, Spain showed, that EERs between 7-8 can be reached, hence, the electric power consumption of the cooling system can be reduced by 29 % in transitional seasons and by 44 % during summer. As a result of this approach, it is determined that full load operation conditions of minimum 3,800 h and ambient heat rejection
conditions with above 20°C have to occur constantly through operation period, to enable an overall economic operation of the solar assisted HHP System. As an example, for the investigated industry process in Barcelona specific cooling costs of 0.031 EUR/kWh can be reached at operating hours of 4,748 h/a. Moreover, it was analysed that the solar assisted HHP system is likely feasible for the implementation into industrial process typologies with both, heat and cold demands.

Contact us!