HyCool Participated at SP2020

On Thursday 29th October, at the virtual Sustainable Places 2020 (SP2020) conference, Prof. Dr. Uli Jakob, from project partner Dr. Jakob Energy Research; presented HyCool at the “Renewable Heating and Cooling Solutions for Buildings and Industry Workshop”.

During this online encounter, a selection of fifteen H2020 EU-funded projects gathered experts from the biomass, geothermal, solar thermal and heat pump sectors to explore a shared strategy to expand the use of renewable energy technology for building and industrial heating and cooling processes.

These technologies offer efficient and increasingly cost-competitive solutions to energy consumption.

Figure 1. Banner for “Renewable Heating and Cooling Solutions for Buildings and Industry Workshop” at SP2020.

In the course of the workshop, the projects were grouped into four categories according to their focus: (1) RHC for industrial applications; (2) storage solutions for RHC building support; (3) innovative solutions for RHC building deployment; (4) demonstration actions for RHC in buildings.

HyCool’s Presentation

Within the first cluster reviewing Renewable Heating and Cooling (RHC) for industries, Dr. Jakob offered a view of HyCool’s mission to increase the use of solar heat in industrial processes. For instance, HyCool’s solution combines solar collectors with adsorption chillers, that use solar energy to produce steam, heating, and cooling energy with greater efficiency.

Figure 2. Slide from Dr. Jakob’s presentation at SP2020.

Furthermore, Dr. Jakob’s shared the key equipment composing HyCool’s innovation and how it will be tested on the two pilot sites where HyCool will use the latest available developments in both concentrated solar panels and thermal storage fields to develop two innovative hybrid solar system concepts: one for chemical industrial processes primarily meant for solar steam and cooling energy provision and one for the small food industry primarily meant for solar cooling production.

Figure 3. Slide from Dr. Jakob’s presentation at SP2020.

In addition, Dr. Jakob showed how the HyCool’s Pre-feasibility Simulator can enable users to evaluate whether or not HyCool’s technology is suitable for a given industrial cooling process.

More About the Workshop

In conclusion, to further support the increase in the share of renewable energy across the EU, the production and validation of RHC solutions are of primary importance. The numerous fields of application in which innovative RHC technologies are proposed and currently investigated to demonstrate the relevance of this subject. Their performance and reliability must be demonstrated in order to achieve large distribution, because one of the key obstacles is the reluctance of industrial firms to implement new technologies, which can cause problems in production processes.

What seems necessary is to continue and improve cooperation between EU partners in order to take advantage of the expertise gained and to explore the social obstacles to the implementation of these solutions.

Learn about this workshop’s participating projectSWS-Heating – HYBUILD – CREATE – TRI-HP – GEOFIT – SHIP2FAIR – SUNHORIZON – Heat4Cool – GEOFIT – SCORES – Innova microSolar – Hybrid BioVGE – RES4BUILD – SolBioRev – FRIENDSHIP

Chair of the workshop: Andrea Frazzica (CNR ITAE) – partner of GEOFIT

Participating European Commission representatives: Olga RIO-SUAREZ, Policy Officer, DG Research & Innovation; and Eleftherios Bourdakis, Policy Officer, DG Research & Innovation.

Sources

Link to Proceedings: Renewable Heating and Cooling Solutions for Buildings and Industry

“Experimentally Validated Dynamic Model for a Hybrid Cascade System for Solar Heating and Cooling Applications”

By Valeria Palomba, Andrea Frazzica, Steffen Kühnert, André Große

Istituto di Tecnologie Avanzate per l’Energia CNR-ITAE, Messina (Italy)
Fahrenheit GmbH, Halle (Germany)

Last September our colleagues Valeria Palomba, Andrea Frazzica, Steffen Kühnert and André Große
presented the following paper on Hycool at the Eurosun conference held in Rapperswill:

ABSTRACT

This paper presents the dynamic modelling of a hybrid cascade chiller for solar cooling in industrial applications driven by Fresnel solar thermal collectors. The chiller comprises an adsorption module, which is directly connected to the bottoming vapor compression chiller. This cascade configuration allows enhancing the overall electric COP, since the adsorption module is operated to dissipate the heat rejected by the vapor compression chiller, thus reducing the condensation temperature quite below the ambient temperature. The model was implemented in Dymola/Modelica, allowing describing heat and mass transfer phenomena inside each component. The complete model was then validated against experimental data obtained on a cascade chiller prototype at the CNR ITAE lab. Finally, a reference daily simulation was performed to evaluate the ability of the developed chiller in providing cooling energy to a typical industrial application

Keywords: Dymola/Modelica, cascade chiller, industrial solar cooling

1. Introduction

The cooling demand is continuously growing worldwide in different sectors (Werner, 2016). Particularly, energy consumption and related emissions due to cooling processes in industrial sector are becoming a major issue. For this reason, the integration of renewable thermal energy sources inside industrial sites, for both heating and cooling applications is gaining a lot of attention (Farjana et al., 2018). Usually, it is accomplished with the use of thermally driven sorption machine, driven by thermal energy produced by non-concentrating solar thermal collectors (e.g. flat plate, evacuated tubes) (Murray et al., 2016). Nevertheless, this approach suffers of some weaknesses: first, when renewable source (i.e. solar energy) is not available, a backup system is needed to either operate the sorption chiller (e.g. gas boiler) or to directly produce cooling by means of standard technology (e.g. vapour compression chiller).
Secondly, the use of non-concentrating solar thermal collectors technologies often is not sufficient to properly drive the sorption machine, thus making it work under off-design conditions for several hours. Furthermore, these solar thermal collectors cannot be integrated as heating source in most of the industrial sites, since the achievable temperature level is usually not sufficient drive any process.

In such a background, the EU co-funded project HyCool (HyCool, 2018) aims at increasing the use of solar heat in industrial processes, integrating a concentrating Fresnel solar thermal collector technology, with a hybrid cascade chiller, to increase the share of renewable sources for heating and cooling applications in industries.

The present paper deals with the development of a numerical model, implemented in Dymola/Modelica, for the simulation of the innovative cascade chiller. The model describe heat and mass transfer phenomena in each component of the chiller, in order to accurately simulate its operation. Furthermore, it has been validated by means of experimental data measured at the CNR ITAE lab and it will be further used to evaluate optimal operating conditions and management strategies under typical working boundaries of an industrial plant.

2. The Hybrid cascade chiller

The hybrid heat pump is made up of two units, working in cascade mode: a thermal unit and an electric unit. The thermal unit is an adsorption chiller, based on the system already commercialised by Fahrenheit, which will be driven by the heat produced by a field of Fresnel solar thermal collectors, for the production of chilled water in the range of 16-22°C. This unit is hydraulically connected to the condenser of an electric vapour compression unit (i.e. cascading mode), which will provide chilled water to the user. In such a way, the adsorption unit is primarily meant for dissipating the condensation heat of the vapour compression unit. This operation allows increasing the overall electric COP, by reducing the temperature lift between evaporator and condenser of the vapour compression unit, thus limiting the compressor work.

Furthermore, the utilization of the cascading operation of the two units allows exploiting the benefits of the two types of systems, i.e. the low primary energy consumption of the thermal unit, which will be fed by renewable solar energy, and the fast response and good temperature control under different conditions of the electric unit (Vasta et al., 2018). A schematic of the hybrid heat pump operation and components as well as the different temperature levels is reported in Figure 1.

3. Dynamic modeling and validation

As shown in Figure 1, the hybrid heat pump is realized by hydraulically connecting the thermal and electric units. Consequently, the models for the two units were implemented and tested separately and then the overall model for the system was assembled and calibrated. […]

Read more

Sustainable Places 2018 Conference

HyCool project was invited to participate in Sustainable Places 2018, an annual international conference who gathers stakeholders from leading organizations around the world to advance the state of art and play in one of the greatest challenges that our societies and their urban planners have ever faced: The need to enhance the sustainability of places ensuring long-term environmental security.

The event was held from 27th to 29th of June, and the local co-hosts for this 6th iteration of the congress were INES (The French National Solar Energy Institute of France) and University Savoie Mont Blanc (Chambery campus). The general SP2018 program structure included a two-day symposium, comprising several keynote speakers, clustering workshops, and presentation sessions.

Even the event was just about one month before HyCool’s KoM, so we could just provide general information about the project, it was a great opportunity to start with the project’s dissemination, contributing with a poster.

Contact us!