Meet the Pilot Sites: Givaudan

Article by Givaudan

By maximising the use of renewable energy through its unique technology, HyCool aims to minimise greenhouses gas emissions. Givaudan, which itself has a target of reducing absolute Scope 1 and 2 GHG emissions by 30% between 2015 and 2030, is proud to host one of the project’s two pilot sites at its Sant Celoni plant. Givaudan spoke to Jorge Vilaseca, local Project Engineer, to get an update.
HyCool Pilot: Givaudan’s Sant Celoni Site
Why did Givaudan decide to participate in this project?

The idea was to test HyCool in at least two industries using significant amounts of cooling in their
processes and Givaudan offers a great profile to host one of the pilot sites as a representative of
the chemical industry. We couldn’t pass up the opportunity to participate in this innovative project.
HyCool is particularly attractive to Givaudan for two main reasons. First, our sustainability strategy
A Sense of Tomorrow includes ambitious environmental targets. This project will help us reduce
GHG emissions by a projected 3% for the site and decrease energy consumption in terms of
electricity and gas, helping us towards our goal of 100% renewable electricity by 2025. The
project is totally aligned with our sustainability strategy. Secondly, every Givaudan production
plant needs heating and cooling, and it would be relatively easy to replicate this technology.
HyCool should deliver refrigeration with 25% greater efficiency—this would provide Givaudan a
competitive advantage.

How far along are we in the project?

We have finished the conceptual phase: we have decided where and how to use the cooling
produced, where to install equipment and how to connect it. Now we are looking at detailed
engineering: how to best connect materials, figuring out the best design for the electrical
connections, etc. The one-year installation phase will then start this summer.

What requirements did Sant Celoni have to take into account when planning installation?

One issue was finding a place to install the solar collectors. They require more than 1, 000 m2 of
surface, preferably over a roof. Because of a lack of surface on our buildings, and for safety
reasons, mainly the presence of flammable products, this wasn’t possible, and we had to install
the solar field at ground level. This caused problems such as how to manage shadows of other
buildings that we had to solve.

We also have to comply with all EHS requirements including ensuring a good works plan for
execution. We expect a number of external contractors and companies on site during installation
and we will need to monitor all aspects of their work. We will need to ensure a pre-start safety
review, issue corresponding work permits and make sure we prevent injuries and accidents: we
want to ensure that “Everyone gets Home Safe Everyday”.

Givaudan, which itself has a target of reducing absolute Scope 1 and 2 GHG emissions by 30% between 2015 and 2030, is proud to host one of the project’s two pilot sites at its Sant Celoni plant.

How did consortium partners contribute?

During the initial phase, we worked closely with the equipment companies and engineering and
general contracting partners. This has been a real team effort.

What are the next steps for Givaudan as a pilot site?

The next steps are to finish the installation on time, on budget and safely and then to operate the
machinery and collect data on energy efficiency and ease of use. We have two years of hard work
ahead, but it will be stimulating. As to transferring the technology to other sites – why not? If it is
cost effective, we will be able to use it in countries with even more favourable weather conditions
such as Mexico, South Africa or Singapore.

This interview is also available at Givaudan’s website.

Industrial Cooling Based on Solar Heat at the Demo Sites

Article by Alex Grande, from IDP

Powering of industrial processes, if based on renewable technologies, may offer greater potential for CO2 emission reductions. Solar thermal energy is a promising sector which has been widely studied during the last two decades, becoming a candidate of the highest potential among renewable energy technologies, especially for industrial heating and cooling processes, because some technologies, such as heat pumps and mechanical vapour recompression, are particularly effective in hybrid systems.

The use of direct solar heat in industry is often hampered by barriers like lack of nearby available surface and seasonal imbalances. However, recent solar steam developments applied in the cooling demand services is growing worldwide with a wider variety of use, mainly within the industry. Some technologies, such as heat pumps are particularly effective. The two demonstration sites selected to tests Hycool system (Bo De Debó and Givaudan) are industries where custom-designed packages will be built, installed and tested.

Bo De Debó is a specialised industry in preparing precooked fresh dishes based on meat, fish and vegetable products, for being frozen, vacuum-packed or canned, and then sealed. In this site, Hycool will pre-cool the water in a buffer tank where it should be cooled down with other chiller in order to get 3-5ºC needed for the production of “gazpacho” (a kind of vegetables juice) and food washing processes. The residual heat from the system will be used to produce hot water for cleaning operations.

CSP-Panels to be installed in the roof of Plant 3, in Bo de Debo facilities in Sant Vicenç de Castellet

Givaudan is the global leader in the creation of flavours and fragrances. In close collaboration with food, beverage, consumer product and fragrance partners, Givaudan develops tastes and scents that delight consumers the world over. The Hycool system will provide the cold water needed to refrigerate the glycol stored in a buffer tank before it’s pumped to the vacuum pump water rings. The residual heat from the system will be used to produce steam to be injected in the factory net.

The old chilling system that will be substituted for the Hybrid Heat Pump from the new Hycool system, in Givaudan facilities (Sant Celoni – Spain).

In summary, the solar thermal energy provided by the Hycool System will allow our pilot sites:

  • To reduce their productions costs by using a free source of energy
  • To increase their system efficiency by using the residual thermal energy for producing heat water or steam
  • To reduce their global CO2 emissions by reducing the use of fossil fuels for producing that heat

HyCool’s 2nd General Assembly in Austria

The HyCool Consortium visited Feldkirchen a.d. Donau, near Linz, Austria On May 28th and 29th for its 2nd General Assembly. The meeting was hosted by Ecotherm and held in the picturesque Schloss Muehldorf hotel.

The two-day meeting allowed all partners to evaluate the progress and work done with each work package and see where the project stands after it’s first year. Highlights included the status of design and test of the HHP prototypes for the demo sites, the protocols for testing the adsorber materials, the final design and time table for deployment and execution of the technologies in the demo sites, and a review of the exploitation and communication activities to date.

The proximity to Ecotherm’s premises also allowed the consortium the opportunity to do a technical visit. The consortium had the opportunity to see first hand how they produce the water tanks and take a look at the solar panels installed in their rooftops, which include the Fresnex soalr collectors that will be deployed at HyCool’s demo sites.

The meeting ended having established clear goals for the next 6 months and looking forward to the work ahead.

HyCool and the Market Segment of Solar Thermal for Industrial Applications

Article by Zia Lennard, from R2M

The EU-funded HyCool project is demonstrating the technical and economic feasibility of solar thermal cooling production for the chemical and food industries in two pilot sites. By coupling modular Fresnel concentrated solar panels with thermal storage and hybrid cooling units, HyCool extends the range of applications not only to higher temperature processes, but also to cooling and refrigeration.

HyCool stimulates the market segment by addressing the technical feasibility and the issue of business models to stimulate investment towards wide-scale penetration of solar thermal for industrial processes.

Innovative and adaptive solutions can help alleviate high capital investment by industrial players, shifting risk to actors such as ESCos whose core business is to finance, plan, install, and operate renewable energy systems. As one example, in the sunny countries of Spain, Portugal, and Italy, there are approximately 18,500 steam boiler systems in operation – each a potential market opportunity for HyCool to advance the state of the arts in solar thermal for industrial applications. By demonstrating the technical feasibility and validating business model assumptions with relevant stakeholders, this market segment can be propelled.

New Pre-Feasibility Assessment Tool

The HyCool project launches the HyCool Pre-feasibility Simulator

The HyCool project is ramping up the development of the exciting “HyCool Toolset” that couples innovative concentrated solar thermal collectors with novel hybrid-heat pumps to achieve a wider temperature output range of renewable heating & cooling for any industrial environment or process which may need cooling.

To demonstrate the solar refrigeration concept underpinning the “HyCool Toolset”, a “pre-feasibility simulator” or PFS has been released on the project’s website ( The HyCool PFS in seconds tells users how well this HyCool solar refrigeration concept fits to any given industrial cooling process.

The HyCool PFS is conceived for any user interested in deploying renewable energy into an industrial process. The inputs asked for the simulation are about the process and the estimated temperature:

  • Industrial process & internal temperature – only the required cooling temperature, the electricity price and the amount of full-load operation hours of the process are needed.
  • Estimated solar irradiation and external temperature – an irradiation map is provided; you’ll determine the yearly average Direct Normal Irradiation at the industrial site being simulated. Furthermore, you will need the average external temperature, which can be easily found on the web.

Once you have input the above data into the PFS, you will be able to evaluate the suitability of solar refrigeration for your industrial process in just a couple of seconds. If your industrial cooling process turns out to be feasible, you can contact the HyCool team via the project website and refer to your PFS-ID. You must know the tool only provides a very rough evaluation and is not meant for commercial use.

Users receive a free, private dataset that fully complies with GDPR and is first shown on-screen and subsequently auto-emailed to you. Results are concise, and scores range from 0 to 40 with 0 meaning no suitability and 40 being perfectly suitabile.

With little or no understanding of solar thermal energy and heat pump technology, and very little data about the process being simulated, the HyCool PFS offers the public a glimpse of Industry 4.0 with high efficiency, energy flexibility to reduce consumption, and a high penetration of renewables for industry.

The business cases are currently being piloted across Europe for the market-ready hardware to enter commercialisation planning phase by 2020. HyCool encourages you to test the PFS today!

Try our HyCool pre-feasibility simulator here.

HYCOOL Video Presentation

We finally have here the first video of the HYCOOL project, a motion graphics video that explains in a simple and synthetic way our objectives and the technologies we use, without forgetting the benefits and advantages of installing our innovative cooling systems.

The video is uploaded to the HYCOOL’s YouTube channel, so you can easily share and help us disseminate the project!

More news will soon be published in our first newsletter, which will be sent very soon.
Don’t forget to subscribe!

Standards as a Tool to Boost the Impact of Hycool

Standards as a tool to boost the impact of HYCOOL

by Natalia Ortiz de Zárate, from the Spanish Association for standardization, UNE

The Spanish Association for Standardization, UNE is the body legally responsible for the development of standards in Spain and is also the representative in talks with European standardization bodies (CEN/CENELEC).  Standardization helps shape the future, since it involves state-of-the-art technology and favours the development of new markets resulting from the constant innovation activity carried out by organisations and consortiums.

Standardisation adds value to Research & innovation projects and activities, through the use of the existing standards and the contribution to the development of new ones. Standards provide information on a myriad of tools that simplify the design of and guarantee compatibility with systems and conditions that are already in place. Using them reduces costs and risks, generating trust in the users, facilitating acceptance on the market and streamlining marketing. Concerning this first task, the analysis of existing standards and technical committees related to Hycool activies, the Report on the standardization landscape and applicable standards was submitted to help partners to be aware of the state of the art in solar thermal energy and other related topics.

But standards can also become a valuable tool for transferring the results and knowledge developed in the Hycool project. Both promotion and launch to market, are key to optimising the economic and social impact of the outcomes of Hycool. Standardization system constitutes itself an efficient and fast information and knowledge transfer structure. The bidirectional implication of correspondent technical committees at international, European and national levels allows any information provided to reach an immediate widespread dissemination, focused to the interested stakeholders in every country. Standardization activities have then intrinsically a component providing a mean visibility to the project itself and its outcomes to promote the increase of the current use of solar heat in Industrial processes.

Now UNE is working to establish a close relationship with relevant technical committees in order to better monitor the existing and ongoing standards and to identify gaps and other topics relevant to Hycool where standards could be developed to promote the inclusion of the findings of the project in future new or revised standards that can be easily used by the European or international industry. Participation in standardization activities and collaboration with standardization committees will also help reducing any existing or future barrier from the standards side that could affect the project impact. Standardization activities in HyCool are considered by this reason as a valuable tool for supporting the exploitation of the project outcomes, by facilitating future replicability and widest use and reducing market acceptance risks.

“Experimentally Validated Dynamic Model for a Hybrid Cascade System for Solar Heating and Cooling Applications”

By Valeria Palomba, Andrea Frazzica, Steffen Kühnert, André Große

Istituto di Tecnologie Avanzate per l’Energia CNR-ITAE, Messina (Italy)
Fahrenheit GmbH, Halle (Germany)

Last September our colleagues Valeria Palomba, Andrea Frazzica, Steffen Kühnert and André Große
presented the following paper on Hycool at the Eurosun conference held in Rapperswill:


This paper presents the dynamic modelling of a hybrid cascade chiller for solar cooling in industrial applications driven by Fresnel solar thermal collectors. The chiller comprises an adsorption module, which is directly connected to the bottoming vapor compression chiller. This cascade configuration allows enhancing the overall electric COP, since the adsorption module is operated to dissipate the heat rejected by the vapor compression chiller, thus reducing the condensation temperature quite below the ambient temperature. The model was implemented in Dymola/Modelica, allowing describing heat and mass transfer phenomena inside each component. The complete model was then validated against experimental data obtained on a cascade chiller prototype at the CNR ITAE lab. Finally, a reference daily simulation was performed to evaluate the ability of the developed chiller in providing cooling energy to a typical industrial application

Keywords: Dymola/Modelica, cascade chiller, industrial solar cooling

1. Introduction

The cooling demand is continuously growing worldwide in different sectors (Werner, 2016). Particularly, energy consumption and related emissions due to cooling processes in industrial sector are becoming a major issue. For this reason, the integration of renewable thermal energy sources inside industrial sites, for both heating and cooling applications is gaining a lot of attention (Farjana et al., 2018). Usually, it is accomplished with the use of thermally driven sorption machine, driven by thermal energy produced by non-concentrating solar thermal collectors (e.g. flat plate, evacuated tubes) (Murray et al., 2016). Nevertheless, this approach suffers of some weaknesses: first, when renewable source (i.e. solar energy) is not available, a backup system is needed to either operate the sorption chiller (e.g. gas boiler) or to directly produce cooling by means of standard technology (e.g. vapour compression chiller).
Secondly, the use of non-concentrating solar thermal collectors technologies often is not sufficient to properly drive the sorption machine, thus making it work under off-design conditions for several hours. Furthermore, these solar thermal collectors cannot be integrated as heating source in most of the industrial sites, since the achievable temperature level is usually not sufficient drive any process.

In such a background, the EU co-funded project HyCool (HyCool, 2018) aims at increasing the use of solar heat in industrial processes, integrating a concentrating Fresnel solar thermal collector technology, with a hybrid cascade chiller, to increase the share of renewable sources for heating and cooling applications in industries.

The present paper deals with the development of a numerical model, implemented in Dymola/Modelica, for the simulation of the innovative cascade chiller. The model describe heat and mass transfer phenomena in each component of the chiller, in order to accurately simulate its operation. Furthermore, it has been validated by means of experimental data measured at the CNR ITAE lab and it will be further used to evaluate optimal operating conditions and management strategies under typical working boundaries of an industrial plant.

2. The Hybrid cascade chiller

The hybrid heat pump is made up of two units, working in cascade mode: a thermal unit and an electric unit. The thermal unit is an adsorption chiller, based on the system already commercialised by Fahrenheit, which will be driven by the heat produced by a field of Fresnel solar thermal collectors, for the production of chilled water in the range of 16-22°C. This unit is hydraulically connected to the condenser of an electric vapour compression unit (i.e. cascading mode), which will provide chilled water to the user. In such a way, the adsorption unit is primarily meant for dissipating the condensation heat of the vapour compression unit. This operation allows increasing the overall electric COP, by reducing the temperature lift between evaporator and condenser of the vapour compression unit, thus limiting the compressor work.

Furthermore, the utilization of the cascading operation of the two units allows exploiting the benefits of the two types of systems, i.e. the low primary energy consumption of the thermal unit, which will be fed by renewable solar energy, and the fast response and good temperature control under different conditions of the electric unit (Vasta et al., 2018). A schematic of the hybrid heat pump operation and components as well as the different temperature levels is reported in Figure 1.

3. Dynamic modeling and validation

As shown in Figure 1, the hybrid heat pump is realized by hydraulically connecting the thermal and electric units. Consequently, the models for the two units were implemented and tested separately and then the overall model for the system was assembled and calibrated. […]

Read more

Application of New Cooling Technologies in Food Sector Industry Processes With Solar Energy


The food sector is making ever increasing demands for cooling in production and product conservation processes. Such a situation represents a challenge to the industry, since higher energy consumption can lead to increased greenhouse gas emissions (CO2, SO2 and NOx), which in turn contribute to global warming of the atmosphere. The HYCOOL project was born from the need to cope with sector demands and to minimise their environmental impact. The aim of the project is to maximise the use of renewable energy sources in industrial cooling.

HYCOOL (Industrial Cooling through Hybrid system based on solar heat) is an innovative project co-financed by the European Union as part of the Horizon 2020, programme for validating an industrial cooling and steam generation system using high temperature solar panels. The project, which commenced in May 2018 and is set to last for three years, is led by Veolia Serveis Catalunya and is made up of another 16 partners from six European countries. HYCOOL has a budget of 7.7 million euros and will be tested in two industrial plants in Catalonia.

The aim of the HYCOOL project is to increase the use of solar heat in industrial processes and show that it is feasible to apply new technologies (understood as a system) to industries with cooling needs with the use of solar energy. One of the advantages offered by HYCOOL is its greater flexibility and capacity for adaptation to different settings thanks to its hybrid pumps, which enable it to work with conventional grid electricity or from renewable systems such as solar energy. Hybrid pumps also provide a more efficient system by doubling the coefficient of performance (COP) of conventional heat pumps.

The advantages of HYCOOL for the food industry

One of the sectors that can most benefit from application of the HYCOOL system is the food industry, since it permits the current recooling plants to be replaced. Such plants are necessary for extracting heat from the production areas or for reducing and/or maintaining the temperature of the food product at low temperatures before, during and after the production process.

The purpose of the cooling required in the food industry is to reduce biochemical and microbiological changes in foodstuffs. This enables the life span of fresh produce and processed foods to be lengthened and can also maintain a given temperature during processing, as is the case in fermentation processes.

There are a multitude of processes in the food sector that require cooling systems, as is the case in the fermentation industry (such as the beer-making sector in their fermentation processes, yeast tanks and product storage), the dairy industry (milk pasteurisation processes, obtaining and concentrating whey, butter production, etc.), the meat processing sector (packaging processes in production and storage of raw materials and end products) and the bread industry (fermentation and storage), etc.

For processes like these, the set point temperatures are variable, which is the case with cooling systems used in the market (evaporative cooling systems, indirect cooling, etc.). The HYCOOL system can reach temperatures of 5ºC or -10ºC, depending on the configuration of the compressor it uses (cascade or pre-cooling mode), which makes it adaptable to almost any process in the food industry.

Bo de Debò: first food company to try out HYCOOL

The expectations for the HYCOOL system are not humble ones: it is hoped that the system shall enable reductions in energy consumption of around 75% and increases in efficiency of 25% in the environments where it is used. To demonstrate this, the company BO DE DEBÒ, in Sant Vicenç de Castellet (Barcelona) was selected as a firm in the food sector to test HYCOOL and confirm the performance expected from the system. The main focus of the activities of BO DE DEBÒ is on preparing high-quality pre-cooked dishes, which requires cooling to be used in its conservation processes for raw materials and end products (between 0 and 4ºC) and in the production and delivery areas (between 8 and 12ºC).

The cooling system operates via solar energy and has two key components: the collectors and the hybrid heat pumps. The Fresnel compact solar collectors -developed by the Austrian company, FRESNEX– have a mirror surface area of 10 m2 and supply the heat source used by the system. They also incorporate a swivelling mirror bearing as the support bearing system for the mirrors, using a hinge line. This innovative feature enables the element’s thermal performance to be increased, as demonstrated in the test institute, where excellent results were obtained. On the other hand, the hybrid heat pumps (or HHP) developed by the German company, FAHRENHEIT are made up of a hybrid adsorption/compressor cooler that can exploit thermal energy (residual heat or other renewable energy sources) and electrical energy to supply cooling energy with high electrical efficiency. The system includes an adsorption module with an evaporator that cools the steam compression cooler condenser, thus improving the electrical COP.

The combination and flexibility offered by the system makes for a wider range of output temperatures, generating a broader spectrum of applications in industrial processes. All these technological innovations shall be put to the test at BO DE DEBÒ, which has a solar field surface area of 400 m2 and receives personalised implementation according to its needs.

Other systems that the system can include are steam generation or uses with hot domestic water, or dissipation systems for heat generated in months when most heat is generated and in new processes. Regardless of the use it will finally be put to, the HYCOOL project aims to show that the system’s flexibility enables it to be adapted to any surroundings and so obtain satisfactory performance.

Veolia’s commitment to promoting this type of projects demonstrates the desire of the company to innovate and constantly seek environmentally sustainable solutions based on renewable energies. The implementation of the HYCOOL project is one example of how collaboration between government and the business community can give form to initiatives that not only mean improvements in a company’s energy consumption results but also in its impact on the environment.


RETEMA, Revista Técnica de Medio Ambiente: Aplicación de nuevas tecnologías para refrigeración en el sector alimentación mediante energía solar Veolia lidera el proyecto europeo HYCOOL para maximizar el uso de energías renovables en la refrigeración industrial Hycool, un proyecto para maximizar el uso de la energía solar en la refrigeración industrial Veolia fomentará el uso de energía renovable en la refrigeración industrial Veolia se suma al proyecto HYCOOL para incrementar el uso de energías renovables en la refrigeración industrial Veolia lidera el proyecto europeo Hycool Veolia lidera el proyecto europeo HYCOOL para maximizar el uso de energías renovables en la refrigeración industrial La bagenca Bo de Debò és pionera a generar fred i vapor amb panells solars

Interview With the Hycool’s Project Officer, Daniel Maraver From Inea

  • Why do you think Hycool is a necessary European project in the current context?

DM (INEA): It is crucial that EU academic, research and industrial sectors join forces with the aim of demonstrating that solar heat can be a reliable energy source for industrial processes, therefore bringing significant prospects for the market uptake of this renewable energy source and for the decarbonisation of industrial processes.

  • What were your impressions at the kickoff meeting?

DM (INEA): I was impressed by the individual capacities brought up to the consortium by each member, but also aware of the big technical, administrative and management challenges to be faced by the project during its lifetime due to several aspects such as the large size of the consortium or the relatively short duration (36 months) for a project of this type. The consortium will receive 5.8M€ of EU taxpayer’s money that this is a big responsibility for the project to get timely results.

  • What is the interest of the project having a consortium with a mix of small and large companies?

DM (INEA): One of the main objectives of Horizon 2020 research and innovation programme is to bridge the gap between science, research and innovation communities and society at large by fostering more inclusive, anticipatory, open and responsive research and innovation systems. In other words, bring solutions to the challenges faced by society from research to market. In this frame, it is very interesting to have an adequate mix of small and large companies in order to ensure the SMEs are ready to scale up their technology once it is validated in the project but also that significant industrial investment effort is ensured during the project and after its completion by the different large companies in the consortium.

  • What achievements do you expect from Hycool, and what impact do you think they could have on both industry and the environment?

DM (INEA): From INEA we expect the project to fulfill the obligations set out in the Grant Agreement signed between both parts. In particular, the main achievements should be to improve industrial integration of current solar heating systems, to achieve a cost effective solution, and finally to demonstrate that solar heat can be a reliable energy source for key industries in terms of thermal energy consumption (chemical and food).

In the long term, the main impact of Hycool should be the contribution to the decarbonisation of industrial processes in view of the global environmental challenges faced by our society.

  • How do you think Hycool technology will benefit industries of its two particular demo cases?

DM (INEA): If successful, Hycool will result in significant savings in their cooling processes for both primary energy and fossil fuel utilization, with the corresponding economic impact this will entail. In addition, both companies could also benefit from a positive impact on the public perception of their activities, which will help improving their core business.

  • How do you see the replication of the Hycool project results to other industrial sites?

DM (INEA): I see the replication in different industrial sites as the next necessary step after the project lifetime. I think the strong interest and capacities brought up by the partners involved in the project and the one gained during the 36 months duration will ensure the replication of the Hycool solution, therefore bringing significant economic and environmental impacts to other industrial sites.

Contact us!